Sanjay Deshpande

■ sanjay.deshpande1@northwestern.edu 🔐 www.sanjaydeshpande.phd
in linkedin.com/in/sanjaydeshpandephd

EDUCATION

Yale University

New Haven, CT

Doctor of Philosophy in Electrical Engineering (GPA: 4.0)

Aug. 2021 – Dec 2025

George Mason University

Fairfax, VA

Master of Science in Computer Engineering (GPA: 3.83)

Aug. 2014 - Dec 2016

Jawaharlal Nehru Technological University

Hyderabad, India

Bachelor of Technology in Electronics & Communication Engineering (GPA: 4.0)

Sep. 2010 - May 2014

WORK EXPERIENCE

Postdoctoral Scholar

Jun 2025 - current

Northwestern University

Remote

- Conducted research on side channel attacks on post-quantum cryptographic algorithms.
- Proposed countermeasures to secure post-quantum cryptographic algorithms from side-channel attacks.
- Conducted research on accelerating fully homomorphic encryption schemes in hardware.

PQC Research Scientist Resident

Nov 2024 - May 2025

Remote

- Designed and implemented modular hardware (RTL) architecture for NIST proposed Rjindael 256 algorithm.
 - Hardware design and implementation of Vole-in-the-head variant of Syndrome Decoding in the Head signature scheme from ongoing on-ramp NIST Post-quantum digital signature schemes standardization process.

Research Intern

Jun 2024 - Aug 2024

Microsoft Research

SandboxAQ

Remote

- Designed and implemented a modular hardware (RTL) architecture for an ISO-standardized Post-Quantum Cryptographic scheme (targeting ASIC). The implemented design supports run-time switching between different security levels the scheme

- The design was further extended with a capability to protect against power side-channel attacks.

offers. Additionally, it also has synthesis-time reconfigurability for different performance trade-offs.

Research Assistant

Aug 2021 - May 2025

Yale University

New Haven, CT

- Conducted research on primitives of Post-Quantum Cryptosystems and designed and implemented secure and efficient hardware (RTL) designs of Key Encapsulation Mechanism and Digital Signature Algorithm for multiple candidates from ongoing NIST PQC competition.
- Conducted research on secure hardware architectures for cloud-based quantum computers and proposed and implemented novel software and hardware-based solutions.

PQC Research Scientist Resident

Apr 2023 - Dec 2023

Sandbox AO

Remote

- Evaluated the submissions from the NIST's Post Quantum Digital Signature Schemes standardization competition.
- Implemented a hardware (RTL) design for the Syndrome Decoding in the Head (SDitH) algorithm from the NIST PQC Digital signature scheme competition.

Associate Researcher II

Oct 2020 - Aug 2021

Yale University

New Haven, CT

- Conducted research and developed hardware implementations of key components in Public Key Cryptography, and Post Quantum Cryptography targeting FPGAs.
- Analyzed timing and optimized the design area of the RTL implementations.
- Conducted research on hardware accelerators compatible with RISC V CPU architecture.

Sr. Security Researcher (formerly Sr. Cryptography Hardware Engineer, DarkMatter LLC)

Apr 2019 -Jul 2020

Technology Innovation Institute

Abu Dhabi, UAE

- Research and implementation of hardware accelerators (RTL targeting FPGA) for Post Quantum Cryptography primitives.

- Platform independent RTL implementations of cryptographic algorithms and protocols targeting FPGAs and ASICs. Development process right from customer requirement to production-ready IP.
- Optimized RTL designs for performance in terms of Power, Timing, Frequency, and Area. Drew test plans for verification and validation of the IP.
- Took Ownership of the Hardware Accelerators for FPGA based design and assisted in the Integration process.
- Analyzed the RTL implementations for side-channel attacks and developed side-channel resistant RTL implementations of cryptographic algorithms.

Hardware Security Researcher

Mar 2017 -Apr 2019

DarkMatter LLC

Abu Dhabi, UAE

- Conducted research and implemented Hardware accelerators (RTL targeting FPGA) for Elliptic Curve Cryptography primitives.
- Reverse Engineering and hardware hacking of various devices.
- Tested and Provided mitigations for security threats related to hardware for various devices.

Research and Teaching Assistant

Aug 2015 - Dec 2016

Cryptographic Engineering Research Group (CERG), George Mason University

Fairfax, VA

- Hardware Implementations (VHDL and Verilog) of the Cryptographic Algorithms targeting FPGAs: Virtex 6, Virtex 7, and Zynq 7000 FPGA/SoC families.
- Analyzed performance bottlenecks of authenticated ciphers on hardware (Xilinx Virtex 7), and designed and implemented methods to overcome the bottlenecks.
- Assisted students in Digital Systems Design using VHDL course and FPGA and ASIC Design with VHDL lab. Conducted Linear Electronics lab for undergraduate students.

Junior Electrical Engineer

May 2015 - Aug 2015

 $Rysc\ Corp.$

Manassas, VA

- Designed and Prototyped electronic hardware.
- Conducted PCB Design using Eagle CAD and Tested and Evaluated PCBs.
- Developed ARM Firmware in C.

Lab Assistant

Aug 2014 - Aug 2015

George Mason University

Fairfax, VA

- Assisted students in experiments based on Electrical and Computer Engineering.
- Verified the quality of the components used in Lab Experiments.

TEACHING EXPERIENCE

Yale University

New Haven, CT

Teaching Fellow

- CPSC415/CPSC515: Law, Security, and Logic

Fall 2022

Fairfax, VA

- EENG201: Introduction to Computer Engineering

Spring 2023, Spring 2024

George Mason University

Teaching Assistant

- ECE334: Linear Electronics Lab

Fall 2015, Fall 2016

- ECE545: Digital System Design with VHDL

Fall 2015, Fall 2016

- ECE448: FPGA Design with VHDL Lab

Spring 2016

- ECE232: Digital System Design Lab

Summer 2016

ACADEMIC ACTIVITIES

\display Visiting Scholar

Nov 2025

Academia Sinica

Taipei, Taiwan

- Built a methodology that standardizes hardware evaluation practices and ensures consistent design assessment.

✓ Academic Reviewing Service

- International Symposium on Circuits and Systems (ISCAS) 2026

Nov 2025 Oct 2025

- Journal of Systems Architecture

Oct 2025

- IEEE Transactions on Computers

T 1 000F

- CHIPS Journal Jul 2025

	- IEEE Computer Architecture Letters	Jun 2024	
	- International Symposium on Circuits and Systems (ISCAS) 2024	Dec 2023	
×	Program Committee Member		
	- IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS) 2026	$Dec\ 2025$	
	- Hardware and Architectural Support for Security and Privacy (HASP) 2025	$Sept\ 2025$	
	- ACM QSec: Quantum Security and Privacy Workshop (Co-located with ACM CCS 2025)	Oct~2025	
Ξ	Invited Talks		
	- Academia Sinica, Taipei, Taiwan	$Nov\ 2025$	
	- New York University, New York, USA	Oct 2025	
	- Indian Institute of Technology, Kanpur, India	Aug 2025	
	- Department of Electrical and Computer Engineering, Northwestern University, Evanston, USA	May 2025	
	- Security Group, Qualcomm, Valbonne, France	Nov 2023	
@	Podcasts		
	- Boardwalk Bytes, Atlantic City, New Jersey, USA	Jul~2025	
	- SandboxAQ, Palo Alto, California, USA	Jun 2024	
4	Awards		
	- Best of IEEE CAL award for a paper on Quantum Computer Security, IEEE CAL	Dec 2023	
	- Best Project Award, Cyber-physical Systems Summer School, Sardegna, Italy	Sept 2025	
	- Outstanding Academic Achievement Award, ECE Department at George Mason University, Fairfax, USA 2015	May	
	- Best project award in Cryptography and Computer Network Security course at GMU, Fairfax, USA.	Jul 2014	
	- Certificate of Excellence in Academics, Jawaharlal Nehru Technological University, India	Jul 2014	
	- First Prize in Robocup 2k14, a zonal event, Jawaharlal Nehru Technological University, India	Oct 2013	
) т	Deed Deviewed Dudi (Carlong and Degrade)		

Peer-Reviewed Publications and Research

Cryptography and Hardware Research

- 1. Sanjay Deshpande, Patrick Longa, , and Jakub Szefer. Accelerating FrodoKEM in Hardware. Under review
- 2. Sanjay Deshpande, Yongseok Lee, Mamuri Nawan, Kashif Nawaz, Ruben Niederhagen, Yunheung Paek, and Jakub Szefer. Unified MEDS Accelerator. SAC, August 2025
- 3. Sanjay Deshpande, Yongseok Lee, Cansu Karakuzu, Jakub Szefer, and Yunheung Paek. SPHINCSLET: An Area-Efficient Accelerator for the Full SPHINCS+ Digital Signature Algorithm. ACM Trans. Embed. Comput. Syst., April 2025
- 4. Sanjay Deshpande, James Howe, Dongze Yue, and Jakub Szefer. SDitH in Hardware. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2023(2), Sept. 2024
- 5. Sanjay Deshpande and Chuanqi Xu and Mamuri Nawan and Kashif Nawaz and Jakub Szefer. Fast and Efficient Hardware Implementation of HQC. In Proceedings of the Selected Areas in Cryptography, SAC, Aug. 2023
- 6. Po-Jen Chen, Tung Chou, Sanjay Deshpande, Norman Lahr, Ruben Niederhagen, Jakub Szefer, and Wen Wang. Complete and improved FPGA Implementation of Classic Mceliece. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2022(3):71-113, Jun. 2022
- 7. Sanjay Deshpande, Santos Merino del Pozo, Victor Mateu, Marc Manzano, Najwa Aaraj, and Jakub Szefer. Modular Inverse for Integers using Fast Constant Time GCD Algorithm and its Applications. In Proceedings of the International Conference on Field Programmable Logic and Applications, FPL, Aug. 2021
- 8. Sanjay Deshpande and Kris Gaj. Analysis and Inner-Round Pipelined Implementation of Selected Parallelizable CAESAR Competition Candidates. In 2017 Euromicro Conference on Digital System Design (DSD), pages 274–282, 2017

Quantum Computer Security Research

- 9. Barbora Hrdá, **Sanjay Deshpande**, Theodoros Trochatos, and Jakub Szefer. CHEQ: Towards Enabling Circuit Integrity Checking in Quantum Controllers. In *Proceedings of the Great Lakes Symposium on VLSI 2025*, GLSVLSI, pages 265–272, June 2025
- Theodoros Trochatos, Chuanqi Xu, Sanjay Deshpande, Yao Lu, Yongshan Ding, and Jakub Szefer. Trusted Execution Environments for Quantum Computers. Frontiers in Computer Science, 7, 2025
- 11. Theodoros Trochatos, Chuanqi Xu, **Sanjay Deshpande**, Yao Lu, Yongshan Ding, and Jakub Szefer. Protecting Quantum Computers with a Trusted Controller. In *International Conference on Quantum Computing and Engineering*, QCE, September 2024
- Theodoros Trochatos, Sanjay Deshpande, Chuanqi Xu, Yao Lu, Yongshan Ding, and Jakub Szefer. Dynamic Pulse Switching for Protection of Quantum Computation on Untrusted Clouds. In *International Symposium on Hardware Oriented Security* and Trust, HOST, May 2024
- 13. Theodoros Trochatos, Chuanqi Xu, **Sanjay Deshpande**, Yao Lu, Yongshan Ding, and Jakub Szefer. A Quantum Computer Trusted Execution Environment. *IEEE Computer Architecture Letters*, (01):1–4, Oct. 2023
- 14. Sanjay Deshpande, Chuanqi Xu, Theodoros Trochatos, Hanrui Wang, Ferhat Erata, Song Han, Yongshan Ding, and Jakub Szefer. Design of Quantum Computer Antivirus. In Proceedings of the International Symposium on Hardware Oriented Security and Trust, HOST, May 2023
- 15. Sanjay Deshpande, Chuanqi Xu, Theodoros Trochatos, Yongshan Ding, and Jakub Szefer. Towards an Antivirus for Quantum Computers. In *Proceedings of the International Symposium on Hardware Oriented Security and Trust*, HOST, Jun. 2022
- 16. Theodoros Trochatos, Chuanqi Xu, **Sanjay Deshpande**, Yao Lu, Yongshan Ding, and Jakub Szefer. SoteriaQ: Hardware Architecture for a Quantum Computer Trusted Execution Environment. Under review

Other Research

17. Sanjay Deshpande and Jakub Szefer. Analyzing ChatGPT's Aptitude in an Introductory Computer Engineering Course. In Proceedings of the International Conference on Frontiers in Education: Computer Science & Computer Engineering, FECS, Jul. 2023

□ Demos

18. Theodoros Trochatos, Sanjay Deshpande, and Jakub Szefer. SoteriaQ: Securing Quantum Circuits Hardware Demo. In International Symposium on Hardware Oriented Security and Trust, HOST, May 2024

Book Chapters

19. Sanjay Deshpande. Design of quantum computer antivirus. In Prabhat Mishra, editor, Design Automation for Quantum Computing. January 2026. To appear

■ Projects

Optimized Decomposition of $U_{Heis3}(t)$ into Quantum Gates | Qiskit, Python, IBMQ

Mar 2022 - May 2022

Participated in the IBM challenge and contributed in improving the fidelity of Heisenberg Hamiltonian H_{Heis3} circuit. Implemented a 'trotter' function using optimal two-qubit transformations and demonstrated a fidelity of 52% on ibmq_jakarta.

Antivirus for Quantum Computers | Qiskit, Python, Quantum Computing

Sep 2021 - Dec 2021

Proposed a method to detect malicious circuits in quantum programs. Explored the possibility of modifying Qiskit, and added multi-layered protection – an Antivirus system to detect the malicious attacker circuits, which would prevent malicious users from performing attacks, proposed to run Qiskit programs inside a trusted execution environment, protecting it from malicious users.

Survey on Inference Acceleration for various NN models on cloud processors

Oct 2021 - Dec 2021

Benchmarked results for inference acceleration of pre-trained DNN models – ResNet50 and MobileNetV1 on cloud FPGAs, cloud GPUs, and cloud CPUs. Built a common framework to track different performance metrics - Time, Accuracy, Throughput, and Energy. Provided a fair performance comparison for DNN inference based on the different performance metrics on cloud CPU versus cloud GPU versus cloud FPGA.

Implemented an ALU and carried out the complete ASIC design flow – used Design Compiler for floorplanning, place, and route, and PrimeTime for clock tree insertion and power estimation generated area, power, and timing reports and located the critical paths of the designs. Optimized false paths and maximum delay paths. Used IC Compiler to create back-end designs and generated the GDSII files.

High-Level Synthesis of an ALU | FPGA, High Level Synthesis

Jan 2015 - May 2015

Designed an ALU using high-level synthesis, created an custom IP to Vivado and interfaced it with Zynq 7000 using AXI Lite and AXI Stream interfaces.

LANGUAGES

- English
- Hindi
- Telugu
- Marathi
- Kannada

>_ TECHNICAL SKILLS

Languages: Verilog, VHDL, TCL, C, Python, Qiskit, Assembly.

Operating Systems: Windows, Linux, OSX.

Programmable Hardware: AMD and Intel FPGAs, Arduino.

Tools: AMD Vivado, Xilinx ISE, Intel Quartus prime, GHDL, Verilator, Cadsoft Eagle, Matlab, OpenLane, OpenRoad.

Version Control Tools: Git, TortoiseSVN.

Experience with lab tools: Logic Analyzers, Oscilloscopes, Soldering.